A Clear View on Quality Measures for Fuzzy Association Rules

نویسندگان

  • Martine De Cock
  • Chris Cornelis
  • Etienne E. Kerre
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Elicitation of fuzzy association rules from positive and negative examples

The aim of this paper is to provide a crystal clear insight into the true semantics of the measures of support and confidence that are used to assess rule quality in fuzzy association rule mining. To achieve this, we rely on two important pillars: the identification of transactions in a database as positive or negative examples of a given association between attributes, and the correspondence b...

متن کامل

Some Quality Measures for Fuzzy Association Rules

Several approaches generalizing crisp association rules to fuzzy association rules have been proposed. In an our previous paper we introduced a pair of confidence measures for crisp association rules from which one can be obtained the majority known quality measures. In this paper, starting from these results we give an extension to fuzzy association rules.

متن کامل

A Note on Quality Measures for Fuzzy Asscociation Rules

Several approaches generalizing association rules to fuzzy association rules have been proposed so far. While the formal specification of fuzzy associations is more or less straightforward, the evaluation of such rules by means of appropriate quality measures assumes an understanding of the semantic meaning of a fuzzy rule. In this respect, most existing proposals can be considered ad-hoc to so...

متن کامل

Optimizing Membership Functions using Learning Automata for Fuzzy Association Rule Mining

The Transactions in web data often consist of quantitative data, suggesting that fuzzy set theory can be used to represent such data. The time spent by users on each web page is one type of web data, was regarded as a trapezoidal membership function (TMF) and can be used to evaluate user browsing behavior. The quality of mining fuzzy association rules depends on membership functions and since t...

متن کامل

Comparing Classification Results between N-ary and Binary Problems

Many quality measures for rule discovery are binary measures, they are designed to rate binary rules (rules which separate the database examples into two categories eg. “it is a bird” vs. “it is not a bird”) and they cannot rate N -ary rules (rules which separate the database examples into N categories eg. “it is a bird” or “it is an insect” or “it is a fish”). Many quality measures for classif...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004